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Centrifugally driven circulations in a rapidly rotating cylinder of fluid heated 
differentially in the vertical are considered. Boundary-layer solutions obtained 
previously are extended to include large diameter/height aspect ratios and B 

centrifugal acceleration of the same magnitude as that of gravity. The ratio of 
convective to conductive heat transfer is small in the region of parameter space 
considered. The effect of the circulations on the asymptotic stability of a fluid 
heat from below and subjected to Coriolis force is then considered. Away from the 
side wall of the cylinder the basic state circulation increases the critical Rayleigh 
number at  which gravitational instabilities occur; however, a destabilization 
near the side wall is possible. 

1. Introduction 
When a rotating fluid is heated uniformly from below, solid body rotation 

cannot occur regardless of how small the imposed vertical temperature difference 
may be; motion relative to solid body rotation is produced by the coupling of the 
vertical density gradient and the centrifugal acceleration. Centrifugally produced 
convection must occur in order to balance the body forces in the radial direction. 
Such flows in a right circular cylinder rotating rapidly about its vertical axis 
have been analyzed by Barcilon & Pedlosky (1967 b )  and by Homsy & Hudson 
(1969) (hereafter referred to as I). Boundary-layer solutions have been obtained 
for limited regions of parameter space. In  this paper we extend the treatment of I. 
We also investigate the effect of the centrifugally produced convection on the on- 
set of gravitational instabilities in a cylinder by performing a linear stability 
analysis in which the basic state is that determined in the first part of this paper. 

The dimensionless temperature and velocity fields of the basic state, and 
therefore the Nusselt number for the heat transferred between the horizontal 
surfaces, depend on five parameters: v = V / K  (Prandtl number); e = v/2wh2 
(Ekman number); y = a/h (aspect ratio); A = g / w 2 a  (acceleration ratio, or 
inverse Proude number); p = aAT/8 (thermal Rossby number). The notation 
corresponds to that used in I. h and a are the cylinder half-height and radius, 
respectively, aAT the product of the coefficient of thermal expansion and the 
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imposed vertical temperature difference, w the cylinder angular velocity, and Y ,  

K ,  and g have their usual meanings. 
Barcilon & Pedlosky have treated the region p, E < 1, 

A 1) y = O ( l ) ,  O(1) < yAcTp/Et <a, 

i.e. the first-order effects of a small but non-zero ratio of centrifugal to gravita- 
tional accelerations. The most interesting features in this parameter range 
include vertical symmetries (which disappear if higher-order effects are con- 
sidered), the disappearance of the Ekman suction effect for large yAc~pe-4, and 
the similarities between the boundary-layer structure and the dynamics in this 
inherently non-linear problem and that obtained in the unified theory of stratified 
rotating flows (Barcilon & Pedlosky 1967a). In  addition, the ‘similarity’ solution 
was shown to be physically inadmissible in this region of parameter space. 

In  I, we have treated the region p, E ,  A < 1, 1 < y < O ( E - ~ ) ,  h = apc-4 < O(l ) ,  
where we were restricted to y = O(1) in the case of insulated side walls. The 
parameter h is the ratio of thermal convection to  conduction in the interior 
region of the cylinder. The results obtained were more extensive than those of 
Barcilon & Pedlosky since the interior energy equation becomes linear for 
Aly  < 1. In $ 2  of this paper, we present further results for region p, E < 1, 
A < (hy)--l, y 9 1, hy < O(l),  i.e. for large aspect ratios but small A, so that the 
last condition holds. The similarity solution is found to be valid over large 
interior regions of the fluid, but in general cannot be used alone to calculate a 
Nusselt number. It may be noted that the parameter region y 1, A = O( l ) ,  is of 
most relevance to experimental studies; for most moderate Prandtl number fluids, 
hy 

We have treated the asymptotic stability of a bounded rotating cylinder of 
fluid heated from below in a previous paper (Homsy & Hudson 1971, hereafter 
referred to as 11); it was assumed that the stratification was linear, i.e. the basic 
state was one of solid body rotation with heat being transferred only by conduc- 
tion. This assumption has been made by all previous investigators (see, for 
example, Chandrasekhar 1961 and Niiler & Bisshopp 1965) and is suitable if the 
Froude number is sufficiently small. In  11, a boundary-layer formulation of the 
stability problem was presented. It was shown that for small Ekman numbers, 
cylinders of aspect ratio y > 1 may be considered infinite in extent. The 
asymptotic results were extended to include higher-order terms. Furthermore, the 
instability was shown to be due to energy conversions in the interior regions of the 
fluid, with dissipation in the Ekman layers producing second-order effects. It is 
the assumption of a conductive basic state (solid body rotation) which we wish to 
relax here. We consider gravitational instabilities in a rotating fluid by linearizing 
the equations around the convective basic state which is obtained in the first part 
of this paper. Many of the features of the analysis in I1 carry over to the present 
case. In  our treatment of the stability of the convective basic state, we will limit 
ourselves to the first-order asymptotic problem, and consider instabilities due to 
the buoyancy mechanism alone. In  order to relate this study to previous stability 
analyses, we use the dimensionless parameters which were used in 11. These are 
related to the parameters introduced above: r,, = a/d = +y (aspect ratio); 

1. Thus the analysis in $ 2  relaxes the previous conditions on A .  
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E = v/2wd2 = $e (Ekman number); R = gahTd3/v~ = 16pAya/e2 (Rayleigh 
number) ; aS = v g a A T / 4 ~ ~ ~ d  = RE2 (stratification parameter). 

In $ 3 the stability equations are developed for the asymptotic case, E -+ 0. The 
main effect of the centrifugally driven basic state on the stability problem appears 
as a distortion of the vertical temperature gradient. The stability of the similarity 
profile is determined in $4, and the regions near the cylinder side walls are 
treated more approximately in $ 5.  The results are discussed in relation to recent 
experimental results in $ 6. 

2. The basic state for large aspect ratio 
When the Ekman number is small (large Taylor number) boundary layers 

form on all the surfaces of the cylinder. A thermal wind arising from a balance of 
Coriolis and centrifugal forces occurs in the inviscid core. Horizontal Ekman 
layers control the inviscid axial flow for the region of parameter space considered 
in I. 

For stable stratification the fluid flows radially inward in the upper Ekman 
layer, downward in the inviscid core, outward in the lower Ekman layer. It is 
channelled upward in the side boundary layer and there is also a closed cir- 
culation in the inner Stewartson layer. Heat is thus transferred from the warm 
upper surface to the cool lower surface by both convection and conduction. The 
ratio of convection to conduction in the inviscid core is given by the parameter 

The dimensionless temperature in I is defined using a scale $AT = +(T, - Tb) 
where T, and Tb are the temperatures of the top and bottom surfaces of the 
cylinder, respectively. The parameter /? defined above is then a(T, - Tb)/8. We 
were concerned in I with stable stratification so that AT = T, - Tb > 0. However, 
the solutions in I also hold for unstable stratification with all parameters and 
dimensionless variables which have a factor AT becoming negative. For ease of 
presentation and in order to keep the basic state analysis on a common basis 
with that in I ,  we consider a stable stratification in $ 2 .  For the stability study 
in $3 ,4  and 5, we use a scale ]AT/  and add minus signs to the basic state solution 
where necessary. Thus the stability analysis is on a common basis with 11. 

The largest component of the temperature satisfies a non-linear energy equation 
and this temperature must satisfy the imposed boundary conditions at  the 
horizontal surfaces. The boundary conditions at  the side wall are obtained by a 
detailed treatment of the side-wall boundary layers. The largest component, 8, of 
the interior dimensionless tempeiature satisfies the following bounda,ry -value 
equation which was derived in I : 

h = @/d. 

e = + i ,  z = k i ,  

8 = x ,  r = 1 (conducting walls), 

r = 1 (insulated walls, A > $), 
ae hyae 
ar 29 a d  
_ -  - _-_ 
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a ae 
ar dz ax 
- = -- + 2thy -(-so P ( p ,  z )  dp)] , r = 1 (insulated walls, A < €4). 

( 2 . 4 b )  

Here 

and I,$ is the lowest-order closed circultion within the Stewartson €4 layer. v', the 
dimensional interior tangential velocity with respect to a rotating co-ordinate 
system, is given by 

V' = &ATwr'B, 

where r' is the dimensional radial co-ordinate. The interior axial velocity is 
independent of axial position, and is smaller than v' by a factor of O ( d ) .  The 
interior radial velocity is zero to O ( E )  since the flow is axisymmetric. The first 
correction to Ois O ( d )  for bothinsulating and conducting side walls (Homsy 1969). 

For a radially unbounded system without side walls, a similarity solution can 
be obtained in which the temperature is independent of radial position. Heat 
transferred to the fluid from the hot upper surface is less than that transferred out 
at  the cold lower surface. A net amount of heat enters the system from an infinite 
radial position in order to satisfy an overall energy balance. If in a radially 
bounded system the side walls are perfectly conducting, there is again less heat 
transferred in through the cylinder top than transferred out through the bottom 
and the overall energy balance is satisfied by the transfer of heat through the 
cylinder side wall. The overall Nusselt numbers governing heat transfer through 
the cylinder top and bottom approach those obtained from the similarity solution 
as the cylinder aspect ratio y becomes large. When the side walls are insulated, the 
Nusselt numbers for the cylinder top and bottom cannot approach the similarity 
values as y becomes large since the overall energy balance would not be satisfied. 
The behaviour for large y was not determined in I since the semi-numerical 
solutions for an insulated side wall were restricted to y = O( 1). It is of interest to 
determine if the similarity solution holds over any region of the cylinder as the 
aspect ratio is increased. It will be seen below that the similarity solution does hold 
away from the side wall (in the parameter region under consideration) for a 
cylinder of large aspect ratio regardless of the side-wall boundary condition. 

For large y, (2.1), (2.2) admit a similarity solution valid to within O(7-l) of the 
side walls. In  the region 1 - r = O(y-l), radial diffusion must also be important in 
order to  allow the boundary conditions at r = 1 to be satisfied. On this hypothesis, 
in these regions, 

which suggests the stretching of the radial co-ordinate as 

7 = (1-r)?. 

Thus we seek the solutions of the form 
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Here 8*(z) denotes the similarity solution, discussed shortly, and &q, z)  denotes a 
correction (not necessarily small) to 8" in a layer near the sides. Thus we must 
have lim 6 = 0. The thickness of this layer is O(y-l), and is therefore thicker 

than any of the viscous layers near these same walls. (In this scaling the outer 
Stewartson layer has a dimensionless thickness of O(e*/r).) 

Most of the analysis will be for the linear boundary conditions, (either (2 .3)  
or ( 2 . 4 ~ ) ) ;  indeedthereisgoodreason to believe that ( 2 . 4 ~ )  is theproper boundary 
condition for A = O( l ) ,  h < 1 ,  Ay d O( 1 )  (see Barcilon & Pedlosky 1967b, p. 683).  
Assuming ( 2 . 4 ~ )  valid for A = O(l),  the restriction of the solutions developed 
below becomes A < (hy)-l, which for most experimental situations represents a 
milder restriction than A < 1. 

B - f  * 

The similarity solution 

With the assumed form (2 .8 )  the problem for 8* is quite simple, viz. 

- 29hD8* = DV*, ( 2 . 9 ~ )  

8*=*1, z = + l ,  (2.9b) 

where D = d/dz. We choose the similarity solution to satisfy the isothermality 
conditions at the top and bottom surfaces. It is, of course, incapable of satisfying 
either (2.3) or (2.4).  Note that inposing (2 .9 )  we have placednorestriction onA/y. 
The similarity solution has the closed form representation, 

8* = cosh (29h) - exp ( - 2 4 h )  
sinh (24h) 

(2.10) 

In  addition, we shall later require a representation in terms of the expansion 
functions x,(z), (see I ,  $6) ,  

The notation corresponds to that in I, 

I 

(2.11) 

(2.12) 

Lastly, we note the expansion of 8* in terms of A, 

8* = z + 2 - 4 4  1 - 22) + Qh22(22- 1 )  + . . . . (2 .13)  

If there were no convection, i.e. h = 0, the temperature profile would be linear 
between the top and bottom of the cylinder. It can be seen from (2 .13)  (stable 
stratification) that the effect of convection is to sweep the isotherms down toward 
the coolerbottomsurface. From (2.10),  (2 .11)  or (2 .13)  it can be shown that as A 
increases the temperature gradient decreases at the upper surface and increases at 
the lower surface. For an unstable stratification the flow in the inviscid core would 
be up and the isotherms would be squeezed toward the upper surface. This 

39 F L M  48 
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squeezing of the isotherms has an effect on the critical Rayleigh number for a 
layer heated from below, as will be seen later in this paper. 

The Nusselt number for this profile is 

(2.14) 

which was found in I to correspond to the solution of the full problem for a 
conducting side wall as y -+ CO. 

The correction jields 

The correction fields are seen to satisfy 

($+&)0=-2th--+O a0 
ax 

(2.15) 

0 = 0 ,  Z = f l ,  ( 2 . 1 6 ~ )  

$+8* = z, r = 1, r] = 0 (conducting), (2.16 b)  

, r = 1, = 0 (insulated), ( 2 . 1 6 ~ )  

0+0. r]+oo. (2.16d) 

We neglect the last term in (2.15) and discuss below the limitation which this 
imposes. A solution is written in terms of the x,(z), viz. 

m 

n= l  
0 = 2 $,e- l~~x, (z ) .  

This representation satisfies (2.15), (2.16a, d),  and the constants $n are deter- 
mined by either (2.16b) or ( 2 . 1 6 ~ ) .  

For conducting walls, (2.16b) and (2.11) yield 

$, = - 24h~ ,P;~ ,  (2.17) 

and a uniformly valid representation for 8 becomes 
m 

8(r,  x )  = z + 2*h C 1 - e(--''-l) y'n) Xn. (2.18) 

This is seen to be the asymptotic form of the exact solution for A / y  < 1 (Homsy 
1969). 

T L = l  

For insulated walls, the discussion becomes more involved. In this case the q5% 
are solutions to the infinite set of linear algebraic equations, 

(2.19) 
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Equation (2.19) is derived from (2 .16~)~  (2.11), and the orthogonal properties of 
the x,(z). The set (2.19) is seen to be the asymptotic form of the set obtainedin I, 
equation (7.5) for large y. Any attempt to solve this set will encounter the same 
numerical difficulties in evaluation of Nusselt numbers as we encountered in I. 
It is possible, however, to  generate an analytic solution through O(h2) by per- 
turbing either the original set (2.15)-(2.16~, c) or the linear system (2.19). The 
attack is straightforward, and the calculation yields, 

0 = hyQ1 + (hy)zOz + ~270, + 0(y3h3), (2.20) 

where 0 - -29  m u;2e-wsinwn(z+1), (2.21) 1 -  
n=O 

w, = -( ; 2n+l)n ,  

(2.22) 

W 

x e-""Vsinnn(z+ 1)+ u;2e-wm?zsinw,(z+ 1). (2.23) 
m=O 

We note t8hat is an even function of z, while 02, 8, are odd. Furthermore, the 
neglect of the last term in (2.15), necessary for the validity of these solutions, is 
justified if A 4 (Ay)-l; this is often less restrictive than A < 1. Lastly, we note 
that Q1 is the asymptotic form of the solution obtained in I, equation (3.11). 

Nusselt number calculation 

Analytical results for the Nusselt number may be found. In  the present notation, 

(2.24) 

We note that for conducting walls, 6 is an O(1) function uniformly in y as 
y -+ 00. Thus for this case, 

with an error of O(y-1). This is in agreement with our previous findings in I. 

NU( 1) = DO*( ~fr l) ,  

For insulated walls, through O(h2),  

The O(h)  terms vanish for reasons discussed in I ( 5  3); carrying out the indicated 
oalculations yields 

NU( & 1) = 1 + 0.5428h2y - $A2. (2.26) 

Writing as in I, Nu = 1 + X(y)h2, we obtain the asymptotic form of S(y), viz. 

(2.27) 
39-2 
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Values of S(y) are given in table 1, where we have compared them with the 
numerical results obtained in I. The agreement is good even at low y, and indi- 
cates that the aspect ratio need only be slightly greater than 3 in order for the 
asymptotic theory to be applicable through O(h)2. 

A similar analysis may be carried out for the more complicated boundary 
condition (2.4b). The result of this computation may be found in Homsy (1969), 

S ( y )  = 0.5787 - 8. 
The similarity between this and (2.27) substantiates the conclusion reached in I 
that gravity has only a slight local effect on the flow, confined to regions near the 
side walls. (Note that A = 0 for zero gravity, and small A affects only the function 
8, through O(h2).) 

Numerical values 
Y from I 
1.0 0.193 
2.0 0.627 
3.0 1.13 
5.0 2.17 

10.0 4.82 
15.0 7.47 

Asymptotic 
results (2.27) 

0.419 
0.962 
2.047 
4.761 
7.475 

- 0.124 

TABLE 1. The function S(y) 

Thus the similarity solution is valid over most of the cylinder for either an 
insulated or conducting side wall when the aspect ratio is large; the similarity 
solution can be used to calculate the Nusselt number when the side wall is 
conducting, but not if it is insuIated. Indeed, for insulated walls, the flux/area 
through the horizontal surfaces near the sides is larger by O(y2) than that through 
the majority of the surface. The area of this side region is smaller than the total 
area by a factor of y-l, and thus the contribution of the region near the side wall 
to the Nusselt number is O(y) relative to the contribution of the similarity 
solution. 

3. Linear stability equations 
We treat now the stability of a rotating cylinder of fluid heated from below and 

subject to centrifugal effects. As in 11, the treatment will be asymptotic in the 
sense that the Ekman number will be assumed very small. However, because 
centrifugal effeots are included, the basic state is not conductive and stagnant. 
We concentrate on strong centrifugal effects; what is meant by ‘strong’ will be 
made clear below. 

At this point care must be taken in stating the mechanism of instability under 
discussion. The centrifugally driven basic state is susceptible to many types of 
instability, viz. inertial, baroclinic, shear-flow and gravitational. Of these, we 
restrict our attention to instabilities associated with the gravitational mechanism 
discussed in 11. (It may be argued that this is the mechanism which dominates 
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in the limit of vanishing Ekman number, but this argument has limited relevance 
to  actual experimental systems with very small but non-zero Ekman numbers.) 
Thus we envision a situation in which the stratification is slowly increased until 
small disturbances can extract the gravitational potential energy of the basic 
convective state at a rate sufficient to overcome the dissipation so produced. This 
ignores the kinetic energy of the basic state, as well as any inertial effects. As we 
have seen in 11, this mechanism is associated with energy conversions in the 
interior regions of the fluid, in which to the lowest order, the potential energy 
release is balanced by interior horizontal dissipation. Thus we replace the entire 
centrifugally driven basic state, i.e. the interior fields plus many boundary-layer 
corrections, by its interior representation alone. 

The solutions for the basic state which were obtained in $ 2  are also valid for a 
fluid heated from below. However, they are not in the most convenient form 
since AT is negative; all parameters and dimensionless variables which depend on 
AT are also negative. Therefore, we redefine 

0' = IATIO, Q' = QialATlwa, (3.1) 

where 0' and Q' are the dimensional basic state temperature and velocity respec- 
tively. (Note that the scaling differs from $ 2  by a factor of 2.) We also redefine the 
parameters in terms of IATI, or 

p = &alATl and A = c$/e*. 

Thus we modify the solutions in $ 2  for use in the stability calculation by applying 
the transformations 

e+-se,  A+-A. ( 3 4  

If we then write the temperature and velocity as the sum of this basic state and 
small disturbances (q', T')  and linearize in the usual manner, the linear stability 
equations governing the disturbances at  stationary onset (see 11, '$1) become, 

V . q '  = 0, 

Q' . Vq' + q' . VQ' + 2w(k x 9') + r'w2aT'i 

(3.3) 

- gaT'k = -p-IVp' + vV2q', (3.4) 

(3-5) Q' . VT' + q' . vet = KV~T'.  

The Boussinesq approximation extended to rapidly rotating fluids has been 
invoked (see I, $ 2 ) .  

For the basic state, we use the scaling (3.1) while for disturbances we employ the 
scaling found in I1 to be relevant to the asymptotic problem, viz. 
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Note that the independent variables do not correspond to those used in 5 2; some 
care is required in writing the functionality of 0 and Q. The dimensionless formula- 
tion becomes v.q = 0, (3.7) 

(3.9) 

/ lro[Q.  V q  + q . V Q ]  + k x q + (Av0)-lrTi - T k  = - V p  + EVZq, (3.8) 
upr,(Q. V T )  + as(q. ve) = E V ~ T ,  

where a = v/K, p = alATI/8, A = g/w2a, and as in 11, 

ro = a/d = i y ,  E = v/2wd2, as = v g a ~ A T ~ / 4 ~ w ~ d  = RE2, 

R = galATld3/v~.  

In  simplifying these equations, we rely heavily upon the attack taken in 11, 
which we assume will again be adequate to describe the gravitational instabilities 
of the present basic state. We first show that the inertial terms are negligible, thus 
eliminating the possibility (for the range of p considered here) of any inertial 
instabilities associated with the interior basic flow. The form of Q is (see $2)  

Q = (77, V ,  W )  = (0, 2rO/ro, O(E4)).  (3.10) 

Since the radial component of Q is zero, the bracketed inertial terms in (3.8) 
contain no derivatives of q with respect to r .  This is important since we anticipate 
that the interior horizontal length scale of q will be O(E)) ,  as in 11. Furthermore, 
the largest of these bracketed terms are those involving V ,  and (from (3.10)) are at 
most 0 ( r g 1 ) ,  so that the inertial terms are at  most O(p) .  We anticipate that the 
first non-geostrophic component of the remainder of (3.8) will again be O(E*) 
from the horizontal part of EV2q. This non-geostrophic part is necessary to 
generate a continuity equation to the lowest order. Thus in order to neglect inertia 
to the lowest order, we must have p < E) ,  which is a restriction on the validity 
of the basic flow itself, and poses no serious restriction under normal conditions, 
owing to the smallness of a. 

We now show that the term a/3ro( Q . V T )  is negligible compared to the other 
terms in (3.9). Because U = 0, the largest term in Q .VT is P/r(aT/a$) = O(T/y,,). 
From 11, we had the asymptotic relation R+ PE-4, where P is a constant; this 
implies that T = O(E3) relative to the largest component of the perturbation 
velocity q. This again will be the case if the first term in (3.9) may be neglected, 
i.e. aBE* < EQ, or ap < Eg. This condition is met for the basic state under con- 
sideration, since the analysis in 5.2 was for h < O(l),  i.e. ap < O(EB) < O(Ef) .  

We will demonstrate below that the centrifugal term in (3.8) may be neglected 
under certain conditions. Including the centrifugal term, the simplified stability 

equations are v.q = 0 (3.1 1 a )  

k x q + (Ar0)-4Ti  = - V p  + EV2q + kT, (3.11 b )  

a S ( q .  VO) = EV2T. (3.1 1 c )  

The boundary conditions for the disturbance quantities are 

(solid boundaries), u = 21 = w = 0 

T = 0, z = 0 , 1 ,  

T = 0, r = ro (conducting), 

aT/ar = 0, r = ro (insulated). 



Effect of centrifugal convection on asymptotic stability 615 

The attack is identical to that employed in 11, and will not be reproduced here. 
A new radial co-ordinate x = r/E* is introduced and the disturbances q, T , p  are 
written as interior fields plus Ekman correction fields. An expansion in E* 
through O(E))  is necessary to generate a continuity equation to the lowest order, 
and the resulting first-order interior problem becomes, 

( 3 . 1 2 ~ )  

v = aplax, = -x-la P P + ?  (3.12b7 c )  

(3 .12d)  aplaz = V Z , ~  + T ,  

(3 .12e)  

w = 0, z = 0 , l .  ( 3 . W  1 
Here u, w, w, p ,  T are now the lowest-order interior fields, q5 the azimuthal GO- 

82 a a  
v2 - 5-2- +x-l - 2- 

a+2 ax ax7 

ordinate, 
1 -  

and the eigenvalue P = RE* is to be determined. 

small if 
The centrifugal term now appears in the continuity equation ( 3 . 1 2 ~ )  and is 

A B mE*/r,, (3.13) 

where m is the azimuthal wave-number characterizing the disturbance periodicity 
in the tangential direction. The centrifugal term is zero to the lowest order if 
disturbances are assumed to be axisymmetric. However, since the disturbance 
interior radial velocity, u, also drops in magnitude by a factor of O(E)) ,  it is 
necessary to consider higher-order terms to generate the equivalent axisymmetric 
form of ( 3 . 1 2 ~ ) .  In  this case it is more convenient to introduce a Stokes stream 
function for u and w. The resulting condition for neglect of the centrifugal term in 
(3 .11b)  is 

A B E ) .  (3.14) 

For axisymmetric disturbances, the inequality (3 .14)  is not unduly restrictive. 
However, (3.13) for asymmetric disturbances may not be easily met. We showed 
in I1 that small azimuthal wave-numbers may be used to predict critical Rayleigh 
numbers when centrifugal effects are neglected; however, the possibility of 
growth of a disturbance characterized by large m could not be completely ruled 
out. In  this work we assume that the azimuthal wave-number is zero or at most 
of order unity. 

Combining the conditions (3.13) aiid (3.14) on A with those required for the 
validity of the basic state yields 

E),  axisymmetric, 

mEa/r,, asymmetric. 
( W - l B  A B { (3 .15)  

These are the most restrictive conditions on A we have encountered, but are met 
in cases of sufficiently low Ekman number for moderate Prandtl number fluids. 
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We assume in this treatment that (3.15) holds, and will therefore neglect the 
last term of ( 3 . 1 2 ~ ) .  Thus in this approximation, centrifugal effects are of para- 
mount importance in producing the convective basio state, but are relegated to 
secondary importance in determining the asymptotic stability of the fluid to 
gravitational instabilities. We see moreover, that the major effect of the centri- 
fugal circulations on this mechanism of instability is a distortion of the basic state 
temperature gradient, cf. (3.12e). We now discuss solutions to  the set (3.12) for 
various profiles. 

4. Stability of the similarity profle 
We first determine the asymptotic stability of the main interior region of the 

fluid, for which the basic state temperature is independent of radius and is given 
by the similarity profile (2.10) suitably modified for unstable stratification. For 
this profile, (3.12) can be combined to give a single equation for w, viz. 

We drop the conditions at the side walls and introduce as in 11, 

The system for W(z)  then becomes 
w = W(z)ei'@J,(m). (4.2) 

D2W-Pa2DO*(z;A)W-a6W = 0, (4.3u) 

w = 0, z = 0 , l .  (4.3b) 

D = d/dz, 

which is the equivalent normal modes formulation. P is the eigenvalue which is 
to  be determined as a function of the 'stretched' wave-number a, and A;  the 
latter appears parametrically in the basic state gradient. With due regard for the 
extra factor of 2 in the scaling of O*, and the change of axial co-ordinates, we 
apply (3.1) for heating from below to determine DO* as 

- 2thexp (24h(2z- 1)) 
sinh (24h) 

DO*(z;h) = (4.4) 

The eigenvalue problem (4.3), (4.4) has no general solution, but it is possible to 
generate approximate eigensolutions for small h by applying the standard 
perturbation theory for the eigenvalues of self-adjoint systems (Courant & 
Hilbert 1953, p. 344). The details are given in Homsy (1969). If the lowest eigen- 

together with DO*, 

the results of the calculation are 

value is expanded P = Po+23AP,+2h2P2+ ..., 

DO* = - 1 - 23h(22- 1)  - 2h2[+(22- I)'-+] + ..., 

Po = (n2+ a y p ,  ( 4 . 5 ~ )  

PI = 0, (4.5b) 
(7r2 + a6) ( 16)2 

no c (4.5c) 
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Requiring P to  be minimized as a function of a yields the results, through O(h2), 

(4.6) I a = 1-3048(1+ 0.09746h2), 

P = 8*6965(1+ 0-12954h2). 

These results predict an increase in P with increasing A, i.e. the fluid in the 
interior region of the cylinder becomes more stable due to centrifugal effects. 
Reasons for this stabilization are discussed below. 

FIGURE 1. P v8. h for the similarity profile. -, numerical results; 
- - - - -, perturbation theory, equation (4.6). 

The eigenvalue problem (4.3), (4.4) was also solved numerically using a stan- 
dard initial-value approach for linear eigenvalue problem (Fox 1962, p. 82). 
Eigenvalues were determined numerically for various values of a using a fourth- 
order Runge-Kutta integration scheme, and the minimum then determined. The 
P(a) curve at  fixed A is quite flat near the minimum, resulting in satisfactory 
values of P, but less accurate values of a a t  which the minimum occurs. In  
figure 1 we show the results of these calculations, together with the perturbation 
result, (4.6). It is seen that the perturbation analysis is reasonably accurate even 
for h = 1, the error there being less than 6 yo. 

The reason for the stabilization is as follows. The profile 8" reflects the effect 
of a uniform convective velocity which is upwards in the case of heating from 
below. The parameter h measures the strength of this convective effect relative to 
conduction. As h increases, the lower portions of the fluid tend to become homo- 
geneous, so that the temperature contrast is felt over an effectively shallower layer 
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of fluid whose bottom surface is free. The asymptotic relation R = PE-9 implies 
that the critical temperature difference A q  - d-i, other quantities being held 
constant. As h increases, the effective depth of stratified fluid decreases, thus 
increasing the critical Rayleigh number. This trend is slightly offset by the 
curvature of the gradient, which is usually a destabilizing effect, (see, for example, 
Watson 1968). This curvature is the origin of the second (negative) term in (4.5c), 
which is not of sufficient magnitude to render P2 negative. Thus we see that the 
interior of the fluid is stabilized due to the unidirectional convective flow there. 

5. Stability near the wall 
The determination of the stability near the side wall is a more difficult task, and 

in this initial treatment we will consider the problem only approximately. 
Within O(y-l) of the wall (but still outside the viscous layers) the basic state 
temperature is a function of both axial distance and the stretched radial co- 
ordinate 7 (see $2) .  Stability analyses of profiles of this nature are non-existent 
because a radial variation of temperature implies that the fluid is not initially in 
mechanical equilibrium. We develop below an approximate approach which is 
thought to adequately represent the main effects of a, more rigorous treatment. 
We will limit ourselves to axisymmetric disturbances, although asymmetric 
disturbances may be handled in a similar manner. 

For axisymmetric disturbances, the energy equation (3.12e) becomes 

PW -+- =V2,T. t-: 
From the results in 11, the width of the convective cell is dimensionally O(dE)) ,  
while the width of fluid over which 8 has radial variation is O(d). Thus the radial 
variation over such a convective cell is small compared to the cell width, the ratio 
being O(E4). For such a slow variation, we can then assume that the fluidis locally 
uniform in the radial direction. We define the ‘local’ critical Rayleigh number as 
being the Rayleigh number at a given radial position calculated from the axial 
temperature gradient at that position. We assume that the local Rayleigh 
number may be calculated as for an infinite medium, although it is recognized 
that the solid walls will exert some constraint. This concept is on a firmer mathe- 
matical basis than might first be apparent, for if we eliminate p and T between 
(3.12a,d) and (5.1) we obtain 

a% de* a6 
- ax2 +P (-&+z) V ~ w + V ~ w + O ( E ~ ) ,  

where the O(E8) terms are due to the radial variation of 6. Separable solutions to 
(5.2) of the form (4.2) exist over regions large enough to include many cells and 
thus allow us to drop conditions at  the lateral wall, but still small enough to 
neglect radial variations in 6. Thus separating variables as in $4, we have 

D2W - Pa2(D8* + &/lax) W - a6 W = 0, ( 5 . 3 ~ )  

W = 0, 2 = 0 , l .  (5 .3b)  
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For conducting walls we have 

de* a0 
- + - = - 1 ,  7 = 0 ,  
az a2 

(5.4) 

and thus the fluid immediately adjacent to the wall experiences a conductive 
gradient with the result that the local Rayleigh number takes its conductive 
value. We have not carried out any calculations for conducting walls. 

We now turn to a discussion of insulated side walls, which is of more interest 
in a possible comparison to experiments. In  this case, analytical expressions for 
0 are available only through O(h2); since h is small for most cases of interest, see 
$6, we limit ourselves here to a perturbation analysis. We expand the local 
gmdient, as before, 

Here aojaz is the gradient of the correction fields of $ 2 ,  suitably modified for 
unstable stratification. It then follows that P has the expansion 

P(7)  = Po + 24hP1 + 2h2P2 + (A?) P3(7) + (hy)'P4(?) + h2yP5(q) + O(y3h3). (5.6) 

Note the local nature of P in this case. The analysis is straightforward but 
lengthy. The results are as follows; Po, Pl, P2 are given by (4 .5u,  b, c )  respectively. 
For the local contributions, 

P3 = 0, (5.7) 

( 5 . 8 ~ )  

( 2 k + 3 ) ' + ( 2 k -  
( 2 k +  1 ) ( 2 k + q 2 ( 2 k -  1)" 

ak = 

R 

- 4  
Y k =  ( 2 k + 1 ) ( 2 k + 3 ) ( 2 k - l ) '  

(5.9b) 

(5 .9c )  

( 5 . 9 4  

Thus we may write 
P/Po = 1 +h2(a(7)y2+ b(T)y+ 0.12954). (5.10) 

The functions u(7), b(7 )  are shown in figure 2 .  Note that b(7) < 0, I b(7 )  I > ~ ( 7 ) .  
Therefore instabilities in regions near the wall will occur at  Rayleigh numbers 
below those which are obtained using a conductive profile. We refer to such 
instabilities as ' subconductive '. 
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FIGURE 2. The functions a(q), b(7 ) .  
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FIGURE 2. The functions a(q), b(7 ) .  
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FIUURE 3. The local O(h)2 contribution to  P. 

In  figure 3, values of the local O(h2) contribution to P are shown as a function 
of radial distance for various aspect ratios. The envelope of these curves was also 
computed and is designated by the dotted curve. The results show two important 
trends. First, we note that for any aspect ratio, local subconductive instabilities 
are possible within the side layer near the wall. This behaviour can be explained 
from a consideration of the isotherms of the basic state. (The basic state for stable 
stratification is shown in figure 3 of I.) In the case of insulated walls, convection 
of heat in the side viscous layers is strongly felt as we have shown in I, with the 
result that the isotherms are swept downwards near the sides. This reflects the 
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strong effect of the rechannelling of fluid along these walls to and from Ekman 
layers. The net effect is again to lessen the effective depth of stratified fluid, thus 
stabilizing the fluid adjacent to the wall. Since the isotherms are similarily swept 
upwards in the interior, there must be a region removed from the wall where the 
isotherms are approximately conductive. It is here that the curvature of the 
vertical temperature gradient leads to subconductive instabilities. Obviously 
this effect must occur for any aspect ratio, since the basic upsweep/downsweep of 
isotherms occurs for any cylinder if the sides are insulated. 

It is also seen from figure 3 that increasing the aspect ratio slightly decreases 
the magnitude of the negative correction to the Rayleigh number. This implies a 
less pronounced subconductive behaviour as y increases. The approximate 
nature of these results is to be emphasized. 

The theory is an asymptotic one, the first correction to these results being 
O(Ei). Including the terms of O(E*) would entail the consideration of two effects. 
The first is dissipation in the Ekman layers, as discussed in 11. The second is the 
O(E6) correction to the basic state, which is itself an asymptotic representation. 

The second major approximation was to exclude the centrifugal effects in the 
linear stability equations. For the axisymmetric disturbance treated here, we 

Ef < A -g (Ay)-l, must have 

which is satisfied if the Ekman number is sufficiently small and (r = O( 1). How- 
ever, treating non-axisymmetric disturbances including centrifugal effects is 
clearly the next step to be taken in obtaining qualitatively useful results. 

6. Discussion 
Our analysis is valid for a limited range of parameter space and is not directly 

comparable to any published experimental results. There are, however, two 
studies which should be discussed. Since the theory is an asymptotic one, 
comparisons with experiments are qualitative. 

In  a study by Koschmieder (1967), a cylinder uniformly heated from below 
was rotated a t  Taylor numbers (T = P2) between zero and los. Excellent photo- 
graphs serve to  show conclusively that axisymmetric cellular motion begins near 
the outer rim of the cylinder, and that adjacent cells have circuhtions in the 
same sense, with ‘shear layers’ between. These cell patterns are remarkably 
similar to those occurring in a non-rotating fluid layer with a weak radial 
temperature gradient, Koschmieder (1966), Miiller (1966). A similar radial 
gradient, driven by centrifugal effects, is present near the side walls for the cases 
treated in $ 5 .  It is remarkable that even at  very low rotational frequencies, 
centrifugal effects determine the sense of the circulation in the first rim roll. 

The second recent study (Rossby 1969) covered a wider range of Taylor 
numbers, T < lo8. Extensive measurements were made for both critical and 
supercritical conditions for water and mercury, and some visual observations 
were made with a silicone oil. Only the results for water are relevant to our 
analysis. Subconductive instabilities were found for all Taylor numbers greater 
than 5 x 104, i.e. the Rayleigh number at which measurable convection occurred 
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was less than that predicted by the classical linear analysis for a conductive basic 
state (solid body rotation). For larger the difference between the critical Rayleigh 
number and that predicted by Chandrasekhar's linear theory is as much as 30 %, 
Also, the dependence of the Nusselt number on the Rayleigh number under 
supercritical conditions is different depending on whether subconductive in- 
stabilities do or do not occur. At a given Taylor number T < 5 x lo4 (no sub- 
conductive instabilities) the Nusselt number increases smoothly with increasing 
supercritical Rayleigh number. The behaviour for subconductive onset is shown 
in figure 4 where we have sketched Nusselt number versus Rayleigh number 
curves for both types of onset; this is taken from Rossby (1969, figure 12). As the 
Rayleigh number is raised above the critical, there is a small increase in Nusselt 

I "  

Rayleigh number +- 

FIGURE 4. Qualitative experimental behaviour, from Rossby ; -, Taylor numbers for which 
onset is given by conductive theory; -- -, Taylor numbers for which subconductive onset 
occurs. 

number followed by a second break and a steeper increase thereafter. We have 
replotted Rossby's original data in figure 5 .  Re and R, are shown as functions of the 
Taylor number where R, and R, are respectively the critical Rayleigh number and 
the Rayleigh number at which the second break occurs. The R,, of course, repro- 
duce Rossby's marginal stability curve (Rossby 1969, figure 11) and the R, fall 
approximately on the linear stability curve of Chandrasekhar. 

There are several possible explanations for this type of dependence of the 
Nusselt number on the Rayleigh number. This behaviour is characteristic of 
systems which first become unstable to oscillatory modes (Chandrasekhar 1961, 
p. 142), although this is an unlikely explanation in this case since all available 
theoretical evidence indicates that for sufficiently high Prandtl number fluids 
onset is stationary and given by linear theory (cf. Chandrasekhar 1961, Veronis 
1968, Kuppers & Lortz 1969). It is also possible that the behaviour is caused by a 
finite-amplitude disturbance as pointed out by Rossby. Another explanation of 
the data is that the initial increase in the Nusselt number was caused by centri- 
fugal circulations alone, a possibility which was suggested by Koschmieder 
(1967, p. 224). Finally, the subconductive behaviour found by Rossby may have 
been caused by the lowering of the critical Rayleigh number by centrifugal 
circulations as discussed in the present paper. We show below that the behaviour 
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indicated in figures 4 and 5 is generally in qualitative agreement with the predic- 
tions of this paper. Limitations on the region of parameter space over which our 
analysis is valid preclude a quantitative comparison with Rossby’s data. We have 
tabulated experimental Taylor numbers, critical Rayleigh numbers, and the 
dimensionless parameters A ,  A, y in table 2; these were calculated from Rossby’s 
raw numerical data. The parameter A, which is the ratio of convective to conduc- 
tive heat transfer in the inviscid core of the basic state, is reasonably constant and 
extremely small, viz. 0(10-3) for most cases. According to our analysis, at any 

I I I 1 

103 1 04 105 106 107 1 08 
103 I 

7 

FIGURE 5. The Rayleigh numbers R,, R,, recalculated from Rossby’s data, &s a function of 
the Taylor number 7 ;  0, R,; I, R,, --, Chandrasekhar’s marginal stability curve. 

7 x 10-4 R, x 10-3 Y A A X  103 

0.11 2.3 40 244 0-85 
0.32 3.1 40 98 1.4 
1.1 5.0 40 24 3.6 
3.5 9.4 28 32 2.8 
7.5 14 20 62 1.6 

11 16 20 43 2.2 
14 18 20 43 2.2 
21 22 20 22 3.7 
34 28 20 13 5.0 
60 36 10 120 1.0 
95 48 10 71 1.4 

150 50 10 45 1.8 
286 80 10 25 4.6 
900 150 10 7.3 8-3 

1000 135 5.7 63 1.5 
2400 225 5.7 24 2.9 
9690 500 5.7 6.5 13.2 

TABLE 2. Stability parameters calculated from Rossby’s data 
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fixed Taylor number the region near the side wall would first become unstable at a 
subconductive value of the Rayleigh number. This Rayleigh number should 
depend on A, and therefore, the fluid depth. However, Rossby finds that the 
critical Rayleigh number is approximately independent of height. If convective 
effects are to explain the data, the dependence on h would have to be small in the 
region of parameter space under consideration. As the side regions convected 
heat, the Nusselt number would rise slightly with increasing imposed temperature 
difference. This rise would be limited due to the small horizontal area of the 
convection region. At some larger value of the Rayleigh number, the entire 
interior region, over which the similarity solution holds, would become unstable; 
there would be a corresponding increase both in the Nusselt number and the slope 
of the Nu-R curve, since larger regions would be convecting heat. Until the 
interior region becomes unstable, the Nusselt number based on total horizontal 
area would be a function of fluid depth as well as Rayleigh number, since the 
horizontal area available to convective heat transfer varies linearly with depth. 
Five aspect ratios were studied by Rossby and these are indicated in figure 5. 
At a given aspect ratio, centrifugal effects should become more important with 
increasing Taylor number since h increases with T. Considering all the data, the 
aspect ratio decreases as the Taylor number increases, and according to figure 3 
this should cause a slight increase in the effect of the centrifugal circulation on the 
critical Rayleigh number. Our analysis is in qualitative agreement with Rossby's 
data on these points. However, the analysis predicts that the critical Rayleigh 
number for the convective basic state is O(h2) below that for the conductive basic 
state, and this difference is much smaller than the 30 yo observed by Rossby. It 
would be of interest to extend the analysis to the region of parameter space 
investigated by Rossby, as well as to  investigate baroclinic type instabilities and 
finite-amplitude instabilities of the centrifugally driven basic state. 

Grateful acknowledgement is made to the National Science Foundation for 
partial support of this research through grant number NSF GK 2505 and an 
NSF Traineeship held by G. M. Homsy. 

R E F E R E N C E S  

BARCILON, V. & PEDLOSKY, J. 1967a J .  Fluid Mech. 29, 609. 
BARCILON, V. & PEDLOSKY, J. 1967b J .  Fluid Mech. 29, 673. 
CRANDRASEKHAR, S. 1961 Hydrodynamic and Hydromagnetic Stability. Clarendon. 
COURANT, R. & HILBERT, D. 1953 Methods of Mathematical Physics, vol. 1. Interscience. 
Fox, L. 1962 Numerical Solution of Ordinary and Partial Differential Equations. Pergamon. 
HOMSY, G. M. 1969 Ph.D. Thesis, University of Illinois. 
HOMSY, G. M. & HUDSON, J. L. 1969 J .  Fluid Mech. 35, 33. 
HOMSY, G. M. & HUDSON, J. L. 1971 J .  Fluid Mech. 45, 353. 
KOSCHMIEDER, E. L. 1966 Beitr. Phys. Atmos. 39, 208. 
KOSCHMIEDER, E. L. 1967 Be&. Phys. Atmos. 40, 216. 
KUPPERS, G. & LORTZ, D. 1969 J .  Fluid Mech. 35, 609. 
MULLER, U. 1966 Beitr. Phys. Atmos. 39, 217. 
NIILER, P. & BISSHOPP, F. E. 1965 J .  FZuid Mech. 22, 753. 
ROSSBY, H. T. 1969 J .  Fluid Mech. 36, 309. 
VERONIS, G. 1968 J .  Fluid Mech. 31, 113. 
WATSON, P. 1968 J .  Fluid Mech. 32, 399. 


